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Wind Estimation on a Lightweight Vertical-Takeoff- and-Landing
Uninhabited Vehicle
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Wind-velocity measurement on a rotary-wing aircraft is a dif� cult task because of the � ow induced by the rotors.
The purpose of this paper is to develop a method to estimate the wind velocity components from the measurement
of the state variables of a rotorcraft in the moving atmosphere. The algorithm presented is in the framework of
the output error method. The wind-velocity components were estimated using a novel variational formulation.
The method uses airframe and rotor models that calculate the aerodynamic and thrust coef� cients by means of an
arti� cial neural-network technique. To validate the method, the results are compared to wind-velocity estimates
from a Kalman–Bucy � lter.

Nomenclature
A = state matrix
a ´ .aW x ; aW y ; aW z/ = wind acceleration in the inertial frame
ax ; ay; az = vehicle acceleration components

in body axes
B = control matrix
C ´ @h=@x = observability state matrix
Cl; Cm; Cn = aerodynamic moment coef� cients
ClT ; CmT ; CnT = rotor moment coef� cients
Cx ; Cy; Cz = aerodynamic force coef� cients
CxT ; C yT ; CzT = thrust force coef� cients
D = fuselage diameter
D ´ @h=@u = observability control matrix
F ´ @f=@´ = state noise matrix
f = right-hand side of the equations

of motion
f .x/ = neural-networkactivation function
f s = stabilized right-hand side of the

equations of motion
g = gravity acceleration
g = observability function
H ´ @f=@w = state wind matrix
h = Kalman-� lter observability function
Ix ; Iy ; Iz = principal moments of inertia
Ix z = product of inertia
J = merit function
K = steady-state Kalman matrix gain
k D V=jvR ¡ V sin ®j = velocity parameter
L , M , N = aerodynamic moment components
L T , MT , NT = rotor moment components
P ´ hxi x j i = covariance state matrix
p, q, r = angular velocity components in body

axes
R = rotor radius
R ´ h»i » j i = covariance measurement matrix
S = rotorcraft reference surface
u ´ .±A; ±B ; ±C ; ±P / = control vector
V = velocity modulus
V D h´i ´ j i = covariance dynamic matrix
v ´ .u; v; w/ = inertial velocity in body axes
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vR = rotor-inducedvelocity
W = weight
w ´ .ug ; vg; wg/ = wind velocity in the inertial frame
X; Y; Z = aerodynamic force components
XT ; YT ; ZT = thrust force components
x; y; z = inertial coordinates
x = state vector
y = observation vector
z = measurement vector
® = angle of attack
¡ = optimum matrix gain
° D V=ÄR = advance ratio
±A = lateral cyclic control, positive right
±B = longitudinalcyclic control,

positive after
±C = collective control, positive up
±P = differential collective control,

positive right
´ = state noise vector
» = measurement noise vector
½ = air density
¾x , ¾y , ¾z = wind-velocity standard deviations
’, # , Ã = Euler angles
Ä = rotor angular velocity

h : i = mean value

Subscripts

a = augmented value
e = estimated value
NN = neural network

Superscript

T = transpose

Introduction

I N the lastdecade the developmentof theunmannedaerialvehicle
(UAV) was a result of the increasing use of this kind of vehicle

in different � elds of application.1 These UAV applications require
estimation of the local atmospheric wind through measurements
realized on vehicle.

The dif� culties to measure the local wind velocities in various
regions at different altitudes yield the wind estimation by measure-
ments on board on the aircraft a subject of increasing interest.

In particular, it is dif� cult to carry out wind measurements on
a rotary-wing vehicle because of the strong perturbation caused
from the � ow induced by the rotors on the aerodynamic � eld about
the airframe. This is the main motivation of the present study, the
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Table 1 Characteristics of the UAV

Characterstic Value

Overall diameter, m 1.9
Rotor diameter, m 1.1
Central hub diameter, m 0.25
Maximum overall weight, N 800
Payload, N 100
Coaxial rotors 2
Power, h.p. 3 £ 14
at, RPM 11,000
Rotor speed, RPM 3,000
Endurance, h 1.5
Service ceiling, m 2,000

Fig. 1 Three-dimensional view of the UAV.

purpose of which is to developa procedurefor the estimation of the
wind-velocity components through the measurements of the state
variables of a vertical-takeoff-and-landing uninhabited aerial vehi-
cle (UAV).

The UAV addressed in the present study is a shrouded-fan ro-
torcraft shown in Fig. 1, the principal characteristics of which are
reported in Table 1. The vehicle is the result of a research project
jointly developed from the University of Rome ”La Sapienza” and
the Polytechnic of Turin.2;3

The aerial platform is powered by two counter-rotating three-
blade rotors, placed at the center of the toroidal fuselage, driven
by three two-stroke air-cooled engines. The con� guration is rather
peculiar from the aerodynamic point of view because of the strong
interaction between the rotor-induced � ow and the body aerody-
namics.

The aerodynamic force and moment developed by the rotorcraft
airframe are calculatedby means of the method proposed in Ref. 2,
which requires the de� nition of a Lagrangian function represent-
ing the kinetic energy of the � ow expressed in terms of the UAV
state variablesand allows the calculationof aerodynamicforces and
moments through the method of the Lagrange equations.4

As for the propulsiveactions, the same model used in Refs. 2 and
3 is adopted here.

Althoughthere are a numberof referencesin the literatureregard-
ing wind estimation, to the author’s knowledge the determination
of wind through the observation of vehicle state variables has not
received great attention. A work on wind velocities identi� cation
is from Katz and Sharma.5 They consider an aircraft � ying in co-

Pu D g
XT C X

W ¡ g sin # ¡ qw C rv; Pv D g
YT C Y

W C g cos # sin ’ ¡ ru C pw; Pw D g
ZT C Z

W C g cos # cos’ ¡ pv C qu;

P’ D p C sin ’ tan #q C cos ’ tan #r; P# D cos’q ¡ sin ’r; PÃ D sin ’ sec #q C cos ’ sec #r

ordinated � ight into a constant and horizontal wind and proposes
an algorithm for wind-velocity calculation that relies on the ob-
servation of vehicle state variables. Katz demonstrates a theorem
that guarantees the convergenceof his method in the sense that the
estimated wind velocity monotonically approaches the true wind
velocity. The algorithm, which has � ight speed and Euler angles
as observed variables, is based on a � ltering technique and can be
applied in a steady maneuver.

In a more realistic situation where instantaneous maneuvers are
performed in a variable wind, the estimation cannot be limited to
coordinated� ightconditions,but it must take intoaccounttheeffects
of vehicle dynamics and wind unsteadiness.

The basic idea of the present study is that the wind-velocitycom-
ponentscan be consideredas characteristicparametersof thevehicle
because they appear in the force and moment equations.Hence, dif-
ferent identi� cation methods can be applied6;7 to estimate the wind
velocityfromstatevariablesmeasurement.From a theoreticalstand-
point the wind velocity can be estimated through the instantaneous
observationof state variablesand linearaccelerationcomponents.8;9

In this framework McCool et al., in a work dealing with the esti-
mation of sideslip angle of a helicopter � ying at very low airspeed,
evaluates the feasibility of neural-network techniques to determine
the sideslip angle and, in order to � nd the neural-networkarchitec-
ture which provides better results, analyzes several neural-network
con� gurations.

The algorithms based on the neural-network technique are also
applied to determine the state variables in the � ight-test programs,
where, because of the wear and degradation of the instrumenta-
tion, the measurements realized during the � ights are in� uenced by
errors. In this context McMillen et al.9 apply the neural network
technique to � ight-test data to determine several quantities such as
the aerodynamicangles, theEuler angles,and the controlde� ections
and shows that it is often necessary to employ a single network for
each unknown parameter to achieve a correct identi� cation.

In this study an algorithm,based on a variational technique(VT),
is proposed for the wind estimation on the aforementioned UAV
model. The procedure,which requires the de� nition of a merit func-
tion J as a quadratic form of the difference between measured and
estimated observable variables, is in the framework of the output
error method, which can be regarded, in short, as a nonlinear mini-
mization procedure that is commonly used for the identi� cation of
vehicle parameters.6;7

The measured state variables are generated from direct simula-
tionsof the UAV motion,whereas theestimatedobservablevariables
aredeterminedbymeansof a vehiclemathematicalmodel that incor-
porates arti� cial neural networks for the estimation of aerodynamic
and thrust coef� cients.

The main feature of the VT consists in the introductionof adjoint
differentialequations,which reasonablydescribe the time evolution
of wind velocities. The right-hand side (RHS) of this differential
system presents several unknown parameters that are related to the
time variations of the wind-velocity components. These new equa-
tions are the constraints of the optimal problem, and the unknown
parameters are determined through the minimization of J .

To assess the performance of the novel method, the results ob-
tained by the VT approach are compared with those of a classic
technique based on the � ltering approach, where the wind-velocity
components are determined as an augmented state using a steady-
state extended Kalman–Bucy � lter (KF).6;7

Rotorcraft
To generate simulated � ight-testdata, a full nonlinearsix-degree-

of-freedom model of the vehicle is now de� ned. The equations of
motion of the rigid vehicle are written as follows10:
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Pp D
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Ix Iz ¡ I 2
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Px D .cos # cosÃ/u C .sin ’ sin # cos Ã ¡ cos ’ sin Ã/v C .cos ’ sin # cos Ã C sin ’ sin Ã/w

Py D .cos # sin Ã/ u C .sin ’ sin # sin Ã C cos’ cos Ã/v C .cos ’ sin# sin Ã ¡ sin ’ cosÃ/w

Pz D .¡ sin #/ u C .sin ’ cos #/ v C .cos ’ cos#/ w (1)

where the aerodynamic and thrust force and moment terms in
Eqs. (1) are expressed in the following two sections.

Vehicle Aerodynamics
Because of the complexity of the � ow around the rotorcraft, to-

getherwith the strong interactionbetween fan � ow and aerodynamic
� eld about the fuselage, the determination of the fuselage aerody-
namic coef� cients is a dif� cult task.

To determine the aerodynamic force and moment developed by
the UAV fuselage, the aerodynamic model proposed in Ref. 2 is
here adopted. This model, based on a potential representation of
the � ow� eld around the vehicle, consists of a Lagrangian approach
whose peculiarity is to derive the aerodynamic force and moment
through the Lagrange equations method4 applied to a Lagrangian
function T , which represents the kinetic energy of the stream. The
model yields the mathematical expressions of the aerodynamic co-
ef� cients in terms of the angle of attack ®, of the velocityparameter
k D V=jvR ¡ V sin ®j, and of the three angular velocities.

Therefore, the aerodynamic force and moment on the fuselage
are obtained using the Lagrange equations in the general form2;4

.X; Y; Z / D ¡
d

dt

@T
@v ¡ ! £

@T
@v

.L; M; N / D ¡v £
@T
@v ¡

d

dt

@T
@! ¡ ! £

@T
@!

(2)

where as the correspondingaerodynamiccoef� cients are de� ned by

.X; Y; Z / D
1
2
½V f

2 S.Cx ; C y; Cz/

.L; M; N / D
1
2
½V f

2 SD.Cl ; Cm; Cn/ (3)

where D is the shroud diameter, S D ¼ D2=4 is the referencesurface
and

V f D
p.u ¡ ug/2 C .v ¡ vg/2 C .w ¡ wg ¡ vR/2 (4)

is the reference velocity.
The expression of T contains several unknown parameters2 that

give the aerodynamic characteristics of the vehicle. These quanti-
ties, which are the free parameters of the model, have been iden-
ti� ed through the elaboration of the data calculated by the code
VSAERO,11 which is capable of solving the complex aerodynamic
� eld on the airframe in the presence of the fan � ow.

As a result of the vehicle symmetry about the z axis, the � ow on
the shroud depends upon ® and k, and, therefore, Eqs. (2) and (3)
yield aerodynamiccoef� cients that are functionsof ®, k and p; q; r
and do not depend on sideslip angle.

The model is able to take into account the aforementionedeffects
of interactionbetweenthe rotor � ow and theaerodynamic� eld about
the vehicle.

Rotor
The aerodynamic actions developed by the rigid (no � apping)

counter-rotating rotors provide lift force and control moments to
manage rotorcraftattitude.In particular,pitch and roll are controlled
through longitudinal ±B and lateral ±A variations of blade pitch,
whereas the yaw control is carried out by means of differential

variation ±P of the collective pitch on both rotors whose angular
velocity is kept constant by a rpm governor. The blade pitch is
controlled by a mechanism consisting of two independent swash
plates, each driven by three actuators. Rigid rotors cause moments
that are transmitted to the fuselageand, because they have the same
moments of inertiawith respect to their rotationaxis, the gyroscopic
effects of the two rotors are balanced by each other and therefore
do not appear in the rigid-body moment equations.

The thrust forces and moments developedby the rotors are given
by the equations12

.XT ; YT ; ZT / D ¡¼½Ä2 R4.CxT ; CyT ; CzT /

.LT ; MT ; NT / D ¼½Ä2 R5.ClT ; CmT
; CnT

/ (5)

The rotor model, based on the blade-element theory, calculates the
thrust and moment coef� cients through analytical integrationof the
aerodynamicload along the blade span assuming steady-stateaero-
dynamics, whereas the effects from the blade-tip losses and the
mutual in� uence between the two rotors are neglected. As a con-
sequence, the rotor coef� cients depend on angle of attack ®, ad-
vance ratio ° , angular velocity (p; q; r), and the control de� ections
.±A; ±B ; ±C ; ±P /.

Neural-Network-Based Vehicle Model
To estimate the wind-velocity components by the measurements

of the observable variables, it is necessary to have a vehicle math-
ematical model that estimates the time derivativesof the state vari-
ables in terms of the state and control variables and wind velocity.
This model is realized by means of the neural-network technique.

Very often the neural networks are utilized to model the entire
vehiclemodel equations,which, in turn, includeswell-known terms
suchas theweightcomponentsand themomentsof the inertiaforces.

Here the equations of motion, forces, and moments acting on the
rotorcraftare givenby Eqs. (1), (3), and (5), respectively,where each
aerodynamicor thrust coef� cient is expressedby means of arti� cial
neural-networks’technique.

According to Ref. 9, each neural network is used to determine
a single aerodynamic or rotor thrust and moment coef� cient. The
input variables are the pairs (®; k) for the aerodynamic coef� cients
and (®; ° ) for the rotor actions.

The contributionof the controls and the angular velocity is taken
into account, respectively, through the control derivatives and the
derivatives with respect to p, q , and r .

Figure 2 illustrates the neural-networkarchitecture here utilized
that consists in a feed-forward scheme where each layer is com-
pletely connected to its contiguous one. The input layer has two
neurons, each employing a linear activation function, and it is fully
connected with the � rst hidden layer. The neurons of each hidden
layer have the hyperbolic tangent as activation function

f .x/ D
ex

¡ e¡x

ex C e¡x
(6)

and simple multiplicative connection with weight wi j is realized
between two generic neurons i th and j th so that the signal at the i th
neuron results9:

xi D f
Á

X
j

wi j x j

!
(7)



762 DE DIVITIIS

Fig. 2 Schematic of the arti� cial neural-network architecture.

All of the networks have two hidden layers, whereas the output
layer is made of a single neuron, which corresponds to a simple
linear activation function. The number of neurons for each hidden
layer is selectedin such a way that the maximum differencebetween
estimated and real value is less than 1% of the maximum value. In
this respect tests show that the number of neurons for each hidden
layer which satisfy this condition is greater than 18. Hence all of
the networks have two hidden layers with 20 neurons.

To train the neural networks, the aerodynamic and rotor mod-
els described in the preceding sections have been used to gener-
ate 40,000 randomly generated pairs (®; k) or (®; ° ) with an uni-
form probability distribution in the intervals (¡90, 90) £ .0; 2/ or
(¡90, 90) £ .¡0.5, 0.5), respectively. Each single neural network
is trained by presenting to it all of the aforementionedpairs and the
correspondingcoef� cients.

The arti� cial neural networks are used only to estimate the aero-
dynamic and rotor coef� cients in a preprocessing step followed by
wind estimation.

Aerodynamic Model
Each aerodynamic coef� cient Ci is supposed to be the sum of a

part Ci NN that dependson ® and k, plus linear functionsof Op; Oq , and
Or , that is,

Ci D Ci NN.®; k/ C
@Ci

@ Op
Op C

@Ci

@ Oq
Oq C

@Ci

@ Or
Or

.i D x; y; z; l; m; n/ (8)

where . Op; Oq; Or/ D D=2V .p; q; r/. The � rst term of Eq. (8) is mod-
eled using an arti� cial neural network (Fig. 2) that has ® and k
as input parameters and the aerodynamic coef� cients evaluated at
Op D Oq D Or D 0 as outputs. The other terms represent the contribu-
tions of the rotary derivatives to the aerodynamiccoef� cients. Each
rotary derivative is a function of ® and k and is expressed through
the terms of Eq. (2) that depend on p, q , and r .

Rotor Model
Rotor thrust and moment coef� cients dependupon ®, ° , ( Op; Oq; Or)

and .±A; ±B ; ±C ; ±P /, and, also in this case, they are expressed as

Ci T D Ci TNN.®; ° / C
@Ci T

@ Op
Op C

@Ci T

@ Oq
Oq C

@Ci T

@ Or
Or

C
@Ci T

@±A

±A C
@Ci T

@±B

±B C
@Ci T

@±C

±C C
@Ci T

@±P

±P

.i D x; y; z; l; m; n/ (9)

where the rotary and control derivatives are assumed to be constant
quantities,whereas the expressionsof the nonlinearfunctionsCi TNN

are obtained through a neural network, which has the same scheme
shown in Fig. 2.

State Representation and Observability
Both rotorcraft and the vehicle neural-network model are in the

state-space form. The equations of motion for the rotorcraft can be
written as

Px D f .x; u; w; ´/

y D g.x; Px; u/ ´ g[x; f .x; u; w; ´/; u]; z D y C » (10)

where x D .u; v; w; ’; #; Ã; p; q; r; x; y; z/ is the state vector, the
functionf representstheRHS of the motion equationswhereinaero-
dynamic and thrust coef� cients are calculated as described in the
proper sections,whereas y and z de� ne, respectively,the observabil-
ity and measurability of the dynamical system. The measurement
noise » is caused by the instrumentationerrors, whereas ´ can have
variousorigins such as the enginevibrationsor the air turbulence.In
the latter case w and ´ are, respectively, the average wind-velocity
and the wind-velocity � uctuations.

The present analysis prescribes the observability of x and Px so
that y depends on x, u, w and ´.

As for the neural-networkmodel,

Pxe D fNN.x; u; we/ (11)

ye D g.x; Pxe; u/ ´ gNN.x; u; we/ (12)

where fNN is the RHS of the equations of motion wherein the aero-
dynamic and thrust coef� cients are given by neural networks while
ye and we are the estimated outputquantitiesand the estimated wind
velocity.

Although Eq. (11) is not used to calculate the time history of the
state variables, it is necessary to determine Pxe as the function of x,
u, and we to obtain the estimated observablevariables in terms of x,
u, and we.

Stability Augmentation
The vehicle is highly unstable, and its dynamic characteristics

are signi� cantly in� uenced by the � ight velocity and the angle of
attack.3 Therefore, a control system is to be designed for its stabi-
lization in a wide range of � ight conditions. The linear quadratic
regulator technique is here adopted for the sake of simplicity,where
the matrix gain ¡ is determined, which gives a minimum value for
the performance integral13

Z 1

0

¡¢xT Qw¢x C ¢uT Rw¢u¢ dt (13)

where ¢u D ¡¡¢x, Qw , and Rw are the state weighting and con-
trol weighting matrices respectively,and ¢ indicates perturbations
with respect to the reference condition. The control command is
expressed as

u D Qu ¡ ¡¢x (14)

where ¡ is given by

¡ D Rw¡1BT M (15)

being M the solution of the steady-state Riccati equation

MA C AT M ¡ MBRw¡1BT M C Qw D 0 (16)

where A and B, which are obtained from Eqs. (11), are numerically
calculatedby centered� nitedifferences,and Eq. (16) is solvedusing
a Newton–Raphson algorithm.

Therefore, the control law is implemented on the rotorcraft as
follows:

Px D f .x; Qu ¡ ¡¢x; w; ´/ ´ f s.x; Qu; w; ´/ (17)
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The calculation of ¡ is only valid around the reference conditions.
Some tests have shown that the typical scheduling of Qw and Rw

with slow state variables such as airspeed and altitude cannot be
suf� cient to stabilize the rotorcraft in the various � ight situations
because of the strong nonlinearity of the model. For this reason,
during the simulation the matrices A, B, and ¡ are updated when
the maximum of the state variables variations exceeds the 10% of
their reference values. These reference values, which are selected
in order to stabilize the vehicle, are V f for the velocity components,
0:01.V f =D/ for the angular velocity components, and ¼=2 for the
Euler angles.

In the calculations Qw and Rw are given by the values Qw11 D
Qwi j D 0, (i 6D j ), Qw22 D Qw33 D 1=VREF, Qw44 D Qw55 D Qw66

D Qw77 D Qw88 D Qw99 D 1, and Rwi j D 0, (i 6D j ), Rwi i D 1,
(i D 1; 2; 3; 4).

Variational Technique for Wind-Velocity Estimation
The procedure illustrated in this section is founded on a varia-

tional technique, the characteristics of which are in the framework
of output error method that, basically, consists of nonlinear opti-
mization procedures and is commonly employed to estimate the
parameters of aircraft model.6;7

In this study the minimum of the following functional is searched
for:

J .w/ D
1

2T

Z T

0

[z.t/ ¡ ye]
T R¡1[z.t/ ¡ ye] dt (18)

which depends, through Eq. (12), upon we.
The solution that minimizes J supplies an estimationof the wind

velocity we that, as shows from Eq. (18), directly depends on the
covariance matrix R.

The condition that leads to the minimum of J can be expressed
using variational calculus ±L D .@ J T =@we/±we D 0 8 ±we . Because
of the arbitrariness of ±we, one obtains

@ J
@w e

´
1
T

Z

0

T

R¡1 @gNN

@we
dt D 0 (19)

The solution of Eq. (19) only exists if R is not singular and,
@gNN=@we 6D 0 and provides the time variationswe during the obser-
vation period T .

Several numerical methods can be used to solve Eq. (19). Actu-
ally the minimization is carried out by introducing, together with
Eq. (18), a set of differential equations that reasonably represents
the time history of the wind velocities

Pwe D a ´ .aW x ; aW y; aW z/;
p

aT a · aMAX (20)

where the RHS a is the a priori unknown local wind acceleration,
whereas aMAX represents its maximum intensity.

The problem is therefore formulated to � nd the minimum of J
with constraints expressed by Eq. (20) as follows

Ja.we; Pwe/ D J C
1

2

Z T

0

¸T . Pwe ¡ a/ dt

´
1

2

Z T

0

L.we; Pwe/ dt D min (21)

with

L.we; Pwe/ D [z.t/ ¡ ye]
T R¡1[z.t/ ¡ ye] C ¸T . Pwe ¡ a/ (22)

where L is a function of both we and Pwe , whereas ¸ is the Lagrange
multipliersvector. The solution that minimizes J is obtainedapply-
ing the variational calculus to Eq. (21), that is,

d

dt

³ @L
@ Pwe

´
¡

@L
@we

D 0; ¸T a D max;
p

aT a · aMAX

(23)

IntroducingEq. (22) into Eq. (23),one obtains the followingsystem:

P̧ D R¡1 @gNN

@we
(24)

¸T a D max;
p

aT a · aMAX (25)

where Eq. (24) gives the time history of ¸, and the algebraic set
of Eq. (25) gives the value of a. Then Eqs. (24) and (25) can be
rewritten as

P̧ D R¡1 @gNN

@we
(26)

Pwe D aMAX

¸

j¸j
(27)

Equation (27) states that Pwe describes in the space .aW x ; aW y; aW z/

the points of a sphere having radius aMAX and center in the origin
.0; 0; 0/. Because of the presence of a discontinuity of the term
¸=j¸j in the origin, Eq. (27) does not admit solutions representing
steady winds. To obtain steady solutions, in Eq. (27), aMAX is re-
placed by the term aMAX tanh.j¸j/, which is a function that vanishes
at j¸j D 0 and is equal to aMAX when j¸j ! 1:

P̧ D R¡1 @gNN

@we

; Pwe D aMAX tanh.j¸j/
¸

j¸j
(28)

allowing steady solutions for j¸j ! 0.
As a conclusion, the problem has been reduced to a set of or-

dinary differential equations, the solutions of which give the time
historiesof we and ¸. In particular,we and ¸ are calculatedintegrat-
ing Eqs. (28), and, therefore, they depend upon the initial condition
we.t D 0/, ¸.t D 0/. In all of the calculations, it is we.t D 0/ D 0,
¸.t D 0/ D 0.

Also, aMAX has the purpose to limit fast time variationsof the es-
timated gust speed, and an adequate value of it preventsundesirable
reproductionsof noises and turbulent velocity � uctuations.

Filtering Approach for Wind-Velocity Estimation
To validate the proposed method, the results calculated by the

VT approach will be compared with those of a classical tech-
nique based on � ltering approach,which is described in the present
section.

The scheme of � ltering approach6;7 is shown in Fig. 3, where
the wind estimation is carried out by modeling the three wind-
velocity components as state parameters that satisfy the following
equation:

Pw D 0 (29)

By de� ning the augmentedstate vectorxT
a D .xT , wT /, the equations

of the augmented system read as follows6;7;13:

Pxa D
µ f.x; u; w; ´/

0

¶
; y D h.x; u/; z D y C » (30)

Fig. 3 Scheme of the � ltering approach (KF).
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The wind estimation is carried out applying the extended steady-
state Kalman � lter to Eq. (30). To calculate the Kalman � lter, the
linearized version of Eq. (30) is considered:

Pxa D Ax C Bu C Hw C F´ C bx

y D Cx C Du C by; z D y C » (31)

where bx and by are bias terms that take into account nonzero initial
conditions and possible systematic errors.

The procedure calculates the steady-state Kalman matrix gain
as6;7

K D PCR¡1 (32)

where P satis� es the well-known algebraic Riccati equation

AP C PAT
¡ PCT R¡1CP C FVFT

D 0 (33)

Hence, the augmented estimated state is calculated by solving the
differential system

Pxae D
µ f .xe; u; we; 0/

0

¶
C K.y ¡ h/ (34)

Next, the Kalman matrix gain is splitted in the two submatrices Kx

and Kw such that K D .Kx Kw/T , so as to separate the wind-velocity
equations from the other ones:

Pxe D f .xe; u; we; 0/ C Kx .y ¡ h/; Pwe D Kw.y ¡ h/ (35)

Finally, the time history of xe and we are obtained by integrating
Eqs. (35), which that therefore need initial conditions on both xe

and we .
As for the implementation of this procedure, a few remarks fol-

lows.The Runge–Kutta fourth-ordermethodwith adaptivetime step
is used to integrate Eqs. (35). Because the extended Kalman � lter
method is applied to a nonlinear system, it is necessary to calculate
both state and control matrices several times during the simulations.
The method checks all of the state variables, and, when the maxi-
mum of their relativevariationsexceeds0.05 of the referencevalue,
it updates the matrices A, B, H, F, and K. Greater allowed variation
of the state variables does not always permit the convergenceof the
procedure.The matricesthat appear in Eqs. (31) are calculatedusing
centered � nite differences,Eq. (33) is solved by a subroutinebased
on theNewton–Raphsonalgorithm,and, in all of the simulations,the
initial condition of Eqs. (35) is assumed to be xe.t D 0/ D x.t D 0/

and we.t D 0/ D 0.

Results and Discussion
The effectivenessof theproposedmethodis evaluatedby carrying

out simulations wherein the motion of the rotorcraft in the presence
of wind is considered.The results so obtainedare comparedwith the
correspondingcalculations realized applying the extended Kalman
� lter method.

In all of the simulations run by using VT, the components in
body axes of the acceleration are measurable, whereas all of the
state variables are supposed to be observable from the simulations.
So that in Eqs. (10) and (12), it is g D .ax ; ay ; az/. As a conse-
quence, in Eq. (18), R is a 3 £ 3 diagonal matrix, the elements of
which representthe standarddeviationsof the accelerationmeasure-
ment errors. In all of the simulations, the elements of R are given
by realistic values based on sensor characteristics, and it results
R11 D R22 D R33 D 0:05 ms¡2 .

The value for aMAX is to be selected so as to keep an accurate
estimation of the mean wind velocity and an adequate � ltering on
the turbulent � uctuations. In this respect aMAX D 1 ms¡2 appears to
satisfy both the requirements because, according to simulations, it
provides an acceptable � ltering effect together with a good evolu-
tion of the mean velocity variations. Higher values of aMAX cause
undesirable reproductions of turbulent � uctuations, whereas lower
values can result in excessively slow estimation of the mean wind
velocity.

In Eqs. (31) and (32) C is a 12 £ 12 identity matrix, and R
is assumed to be a 12 £ 12 diagonal matrix whose elements are

given by realistic values based on the sensors characteristics.
They are R11 D R22 D R33 D 0:1 ms¡1, R44 D R55 D R66 D 0:02 rad,
R77 D R88 D R99 D 0:03 rad s¡1, R10 10 D R11 11 D 5 m, and R12 12 D
50 m. The subscript number indicates the correspondingstate vari-
able, and,also in this case, all of theelementsare chosenconsidering
the measurement error.

In all of the simulations, it is assumed that the noise ´ is caused
by the atmospheric turbulence.

To compare the two algorithms, � ve cases will be considered
where the initial condition for the simulation is a level � ight with a
speed equal to 30 ms¡1 at an altitude of 100 m.

The � rst case, addressed in Fig. 4, considers a simulation last-
ing 20 s where the rotorcraft, after 5-s, encounters an ascending

Fig. 4 Case 1: wind-velocity time histories for a vertical gust;
wg = ¡¡1 ms¡1.
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gust having velocity equal to 1 ms¡1. The two algorithms achieve
the same asymptotical values of wind velocities, but, whareas KF
method (dashedline) generatesa time history in which wg monoton-
ically approaches the limit of ¡1 ms¡1 , the VT time history (con-
tinuous line) presents an overshoot with respect to the real wind
velocity (dotted line). The choice of aMAX for VT and R for KF
leads to time histories that, after 5 s, present very similar slopes of
wg . The maximum errors on the component ug result in 0.09 ms¡1

and 0.11 ms¡1 for the VT and KF respectively, whereas the errors
of vg are always less than 0.005 ms¡1 for both the algorithms. Al-
though both rotorcraftmotion and gust velocitydistributionare two
dimensional, the KF method yields values of vg slightly different
from zero. This is because the wind estimation is realized by means
of the Kalman � lter applied to a complete set of the equations of
motion, which, in general, do not guarantee the calculation of the
exact value of the wind velocity.

In the second simulation the vehicle � ies into a vertical turbulent
gust described by the Dryden model. The turbulence scale is as-
sumed to be equal to 100 m, whereashugi D hvgi D 0, hwgi D 1 ms¡1

and ¾x D ¾y D 0, ¾z D 0:2 ms¡1 . The elements of V are V11 D ¾ 2
x ,

V22 D ¾ 2
y , V33 D ¾ 2

z , and Vi j D 0, i 6D j , whereas the turbulence scale
is assumedon the basis of the data reported in Ref. 10. Figure 5 illus-
trates the time historiesof variousquantitiessuch as altitude,vehicle
speed, and wind-velocity components, whereas Table 2 reports es-
timated averagevelocitiesand standard deviationsof the velocities.
It appears from Table 2 that the estimate errors of wg are about 4.5
and 3% for VT and KF, respectively.Also in this two-dimensional
case, values of vg slightly different from zero are computed from
the KF procedure.

The third case concerns a more complex situation, where the
vehicle � ies into an atmospheric region with a uniform mean ve-
locity distribution and an appreciable turbulent level, which is,
also in this case, described by means of the Dryden model, with
¾x D ¾y D ¾z D 0:2 ms¡1 , hugi D hvgi D 1 ms¡1 , hwgi D ¡1 ms¡1,
and a turbulence scale of 100 m. Hence V is expressedby V11 D ¾ 2

x ,
V22 D ¾ 2

y , V33 D ¾ 2
z , and Vi j D 0, i 6D j . Figure 6 shows the wind-

velocity components vs time, whereas Table 3 gives the average
velocities and the standard deviations obtained with the two proce-
dures. The maximum differencebetween true and estimated veloci-
ties are less than 4 and 6% for the VT and KF methods, respectively.

The fourth case, shown in Fig. 7, regards a simulation lasting
50 s where the wind velocities are variable. Wind components in a
three-dimensionalgust are expressed as follows:

ug D 2 sin2.2¼ t=Tm/; vg D 0:5; t > 0

wg D ¡ sin.2¼ t=Tm / (36)

where Tm D 50 s is equal to theentiresimulationperiod.The analysis
of the time histories shows that KF and VT adequately reproduce

Table 2 Case 2: Mean values and standard
deviations of wind velocities

Parameter Nominal VT KF

hui 0.00 ¡1.43E¡3 8.4E¡3

hvi 0.00 1.6E¡5 1.4E¡4

hwi ¡1.00 ¡0.9706 ¡0.9552
¾x 0.00 0.0151 0.0342
¾y 0.00 4.66E¡5 2.1E¡3
¾z 0.20 0.169 0.151

Table 3 Case 3: Mean values and standard deviations of
wind velocities

Parameter Nominal VT KF

hui 1.00 1.027 0.9980

hvi 1.00 0.977 0.9583

hwi ¡1.00 ¡0.967 ¡0.9437
¾x 0.20 0.176 0.178
¾y 0.20 0.186 0.140
¾z 0.20 0.150 0.153

Fig. 5 Case 2: wind-velocity time histories for a vertical gust in the
presence of turbulence; hhugii = hhvgii = 0, hhwgii = ¡¡1 ms¡1 , ¾x = ¾y = 0,
and ¾z = 0.2 ms¡1 .

the three wind-velocitycomponents,and their errors are always less
than 6 and 5%, respectively.

Figure 8 illustrates the � fth case that corresponds to a � ight into
a turbulent gust having the aforementionedmean velocity distribu-
tions but in the presence of a signi� cant turbulent level given by
the following standard deviations ¾x D 0:2 ms¡1, ¾y D 0:05 ms¡1,
¾z D 0:1 ms¡1 , so that V11 D ¾ 2

x , V22 D ¾ 2
y , V33 D ¾ 2

z , and Vi j D 0,
i 6D j , with a turbulence scale equal to 100 m. In spite of the si-
multaneous presence of turbulence effects and time variations of
mean velocity, it is possible to distinguish the mean velocity from
the turbulent � uctuations in the time histories obtained by the two
algorithms.



766 DE DIVITIIS

Fig. 6 Case 3: wind-velocity time histories for a steady gust in the
presence of turbulence; hhugii = hhvgii = 1 ms¡1, hhwgii = ¡¡1 ms¡1, and
¾x = ¾y = ¾z = 0.2 ms¡1.

Although it is apparent that the two methods produce very
similar results, a sizeable difference can be observed from the
computational point of view. In all of the simulations, VT is re-
sulted about two to three times faster than KF, and this is re-
lated to the different computational tasks that occur in the two
procedures.

In fact, the VT method requires the calculation of gNN and
its derivatives with respect to we , the determination of Lagrange
multipliers, and estimated wind velocities. While in the KF tech-
nique, it is necessary to evaluate many times during the simula-
tion A, B, H, F and K because of the nonlinearities in the vehicle
model.

Fig. 7 Case 4: wind-velocity time histories for a three-dimensional
variable gust.

Because of the use of arti� cial neural networks together with the
assumptionof constant rotary and control derivatives, the computed
wind velocities can slightly differ with respect to the exact values.
Of course, these differences are more limited if all of the neural
networks are properly trained.

The advantage of VT with respect to KF is that the method does
not require the linearizationof the equationsof motion, whereas the
KF technique requires the calculation of state and control matrices
and Kalman matrix gain. Furthermore, the VT method only calcu-
lates the time variations of the Lagrange multipliers associated to
the wind-velocity components, whereas the KF approach requires
the calculation of the estimated state xe .



DE DIVITIIS 767

Fig. 8 Case 5: wind-velocity time histories for a three-dimensional
variable gust in the presence of turbulence.

If, in the KF method,H, F, and K were a priori scheduledwith the
slow state variables (airspeed and altitude), the procedurewould be
more ef� cient. Nevertheless, several tests have shown that, because
of the strong nonlinearities of the model, the scheduled Kalman
� lter calculates velocities that do not always tend to the real value
of the wind velocity.

For VT, gNN must be necessarilya nontrivial functionof the wind
velocities in such a way that its derivatives with respect to wind

velocity are not zero. For this reason g has been assumed to be
equal to the vehicle acceleration.

On the other hand, in the KF method the observability function
depends on the state and control variables only. This, in general,
makes the VT approach less adaptable than the � ltering approach
method.

The main limitation of the VT is that all of the state variables
have to be measurable, a situation that is very dif� cult to realize in
practicalapplications.To avoidthis restriction,the � lteringapproach
could be used to estimate ef� ciently the vehicle state, whereas the
wind estimation can be interfaced with the state estimation � lter.

Conclusions
This work concerns the problem of wind estimation through the

measurements of the state variables of a shrouded-fan unmanned-
aerial-vehiclerotorcraft.The motivationof the study is related to the
dif� cultiesof the wind measurementsaboard on a rotary-wingvehi-
cle as a result of the in� uence of the rotor � ow on the aerodynamic
� eld about the vehicle.

A variationaltechniqueis proposedfor the estimationof the wind
velocity components. The approach is based on adjoint differential
equations that reasonably describe the wind-velocity evolution.

Comparison with a Kalman � lter technique has shown that the
proposed algorithm provides good results together with a consider-
able saving of computational time. A � nal conclusion regards the
main limitation of the proposed method that consists in the fact that
the measurability of the full state is required.
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