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Wind Estimation on a Lightweight Vertical-Takeoff- and-Landing
Uninhabited Vehicle
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University of Rome “La Sapienza,” 00184 Rome, Italy

Wind-velocity measurement on a rotary-wing aircraft is a difficult task because of the flow induced by the rotors.
The purpose of this paper is to develop a method to estimate the wind velocity components from the measurement
of the state variables of a rotorcraft in the moving atmosphere. The algorithm presented is in the framework of
the output error method. The wind-velocity components were estimated using a novel variational formulation.
The method uses airframe and rotor models that calculate the aerodynamic and thrust coefficients by means of an
artificial neural-network technique. To validate the method, the results are compared to wind-velocity estimates

from a Kalman-Bucy filter.

Nomenclature

A = state matrix

a —(awy,awy,aw:) = wind accelerationin the inertial frame

ax, ay, a: = vehicle acceleration components
in body axes

B = control matrix

C _ 0h/ox = observability state matrix

c,C, C, = aerodynamic moment coefficients

Ciys Cnys Cop = rotor moment coefficients

C:, Cy, C: = aerodynamic force coefficients

Cips Cyps Cop = thrust force coefficients

D = fuselage diameter

D _ 0h/0u = observability control matrix

F _df/dn = state noise matrix

f = right-hand side of the equations
of motion

f = neural-network activation function

f = stabilized right-hand side of the
equations of motion

g = gravity acceleration

g = observability function

H _ of/ow = state wind matrix

h = Kalman-filter observability function

I.,1,,1I. = principal moments of inertia

I: = product of inertia

J = merit function

K = steady-state Kalman matrix gain

k — V/|UR _V sinOf| = velocity parameter

L,M,N = aerodynamic moment components

Ly, Mr, Nr = rotor moment components

pP_ (XiXj) = covariance state matrix

psq,r = angular velocity components in body
axes

R = rotorradius

R _ (&) = covariance measurement matrix

S = rotorcraftreference surface

u — (84,85,8¢,8p) = control vector

14 = velocity modulus

V_ (il = covariance dynamic matrix

v — (u, v, w) = inertial velocity in body axes
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Ug = rotor-induced velocity

w = weight

w = (g, vy, W) = wind velocity in the inertial frame

X, Y. Z = aerodynamic force components

Xr.Yr. Z7 = thrust force components

X, y,Z = inertial coordinates

x = state vector

y = observation vector

/4 = measurement vector

o = angle of attack

r = optimum matrix gain

Yy _ V/QR = advance ratio

34 = lateral cyclic control, positive right

dp = longitudinalcyclic control,
positive after

3¢ = collective control, positive up

Sp = differential collective control,
positive right

n = state noise vector

3 = measurement noise vector

o = air density

0y, 0y,0: = wind-velocity standard deviations

0,0, = Euler angles

Q = rotor angular velocity

() = mean value

Subscripts

a = augmented value

e = estimated value

NN = neural network

Superscript

T = transpose

Introduction

N the lastdecade the developmentof the unmanned aerial vehicle
I (UAV) was a result of the increasing use of this kind of vehicle
in different fields of application.! These UAV applications require
estimation of the local atmospheric wind through measurements
realized on vehicle.

The difficulties to measure the local wind velocities in various
regions at differentaltitudes yield the wind estimation by measure-
ments on board on the aircraft a subject of increasing interest.

In particular, it is difficult to carry out wind measurements on
a rotary-wing vehicle because of the strong perturbation caused
from the flow induced by the rotors on the aerodynamic field about
the airframe. This is the main motivation of the present study, the



760 DE DIVITIIS

Table 1 Characteristics of the UAV

Characterstic Value
Overall diameter, m 1.9
Rotor diameter, m 1.1
Central hub diameter, m 0.25
Maximum overall weight, N 800
Payload, N 100
Coaxial rotors 2
Power, h.p. 3 « 14
at, RPM 11,000
Rotor speed, RPM 3,000
Endurance, h 1.5
Service ceiling, m 2,000

Fig. 1 Three-dimensional view of the UAV.

purpose of which is to develop a procedure for the estimation of the
wind-velocity components through the measurements of the state
variables of a vertical-takeoff-and-landing uninhabited aerial vehi-
cle (UAV).

The UAV addressed in the present study is a shrouded-fan ro-
torcraft shown in Fig. 1, the principal characteristics of which are
reported in Table 1. The vehicle is the result of a research project
jointly developed from the University of Rome ”La Sapienza” and
the Polytechnic of Turin.**

The aerial platform is powered by two counter-rotating three-
blade rotors, placed at the center of the toroidal fuselage, driven
by three two-stroke air-cooled engines. The configuration is rather
peculiar from the aerodynamic point of view because of the strong
interaction between the rotor-induced flow and the body aerody-
namics.

The aerodynamic force and moment developed by the rotorcraft
airframe are calculated by means of the method proposedin Ref. 2,
which requires the definition of a Lagrangian function represent-
ing the kinetic energy of the flow expressed in terms of the UAV
state variables and allows the calculation of aerodynamic forces and
moments through the method of the Lagrange equations.*

As for the propulsive actions, the same model used in Refs. 2 and
3 is adopted here.

Althoughthere are a number of referencesin the literatureregard-
ing wind estimation, to the author’s knowledge the determination
of wind through the observation of vehicle state variables has not
received great attention. A work on wind velocities identification
is from Katz and Sharma.’ They consider an aircraft flying in co-
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ordinated flight into a constant and horizontal wind and proposes
an algorithm for wind-velocity calculation that relies on the ob-
servation of vehicle state variables. Katz demonstrates a theorem
that guarantees the convergence of his method in the sense that the
estimated wind velocity monotonically approaches the true wind
velocity. The algorithm, which has flight speed and Euler angles
as observed variables, is based on a filtering technique and can be
applied in a steady maneuver.

In a more realistic situation where instantaneous maneuvers are
performed in a variable wind, the estimation cannot be limited to
coordinatedflightconditions,butit must take into accountthe effects
of vehicle dynamics and wind unsteadiness.

The basic idea of the present study is that the wind-velocity com-
ponentscan be consideredas characteristicparameters of the vehicle
because they appear in the force and moment equations. Hence, dif-
ferent identification methods can be applied®” to estimate the wind
velocity from state variablesmeasurement. From a theoreticalstand-
point the wind velocity can be estimated through the instantaneous
observationof state variables and linearaccelerationcomponents *°

In this framework McCool et al., in a work dealing with the esti-
mation of sideslip angle of a helicopter flying at very low airspeed,
evaluates the feasibility of neural-network techniques to determine
the sideslip angle and, in order to find the neural-network architec-
ture which provides better results, analyzes several neural-network
configurations.

The algorithms based on the neural-network technique are also
applied to determine the state variables in the flight-test programs,
where, because of the wear and degradation of the instrumenta-
tion, the measurements realized during the flights are influenced by
errors. In this context McMillen et al.” apply the neural network
technique to flight-test data to determine several quantities such as
the aerodynamicangles, the Euler angles, and the control deflections
and shows that it is often necessary to employ a single network for
each unknown parameter to achieve a correct identification.

In this study an algorithm, based on a variational technique (VT),
is proposed for the wind estimation on the aforementioned UAV
model. The procedure, which requires the definition of a merit func-
tion J as a quadratic form of the difference between measured and
estimated observable variables, is in the framework of the output
error method, which can be regarded, in short, as a nonlinear mini-
mization procedure that is commonly used for the identification of
vehicle parameters &’

The measured state variables are generated from direct simula-
tions of the UAV motion, whereas the estimated observablevariables
are determinedby means of a vehicle mathematicalmodel thatincor-
porates artificial neural networks for the estimation of aerodynamic
and thrust coefficients.

The main feature of the VT consistsin the introduction of adjoint
differentialequations, which reasonably describe the time evolution
of wind velocities. The right-hand side (RHS) of this differential
system presents several unknown parameters that are related to the
time variations of the wind-velocity components. These new equa-
tions are the constraints of the optimal problem, and the unknown
parameters are determined through the minimization of J.

To assess the performance of the novel method, the results ob-
tained by the VT approach are compared with those of a classic
technique based on the filtering approach, where the wind-velocity
components are determined as an augmented state using a steady-
state extended Kalman—Bucy filter (KF).%7

Rotorcraft

To generate simulated flight-testdata, a full nonlinear six-degree-
of-freedom model of the vehicle is now defined. The equations of
motion of the rigid vehicle are written as follows'’:
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where the aerodynamic and thrust force and moment terms in
Egs. (1) are expressed in the following two sections.

Vehicle Aerodynamics

Because of the complexity of the flow around the rotorcraft, to-
gether with the strong interactionbetween fan flow and aerodynamic
field about the fuselage, the determination of the fuselage aerody-
namic coefficients is a difficult task.

To determine the aerodynamic force and moment developed by
the UAV fuselage, the aerodynamic model proposed in Ref. 2 is
here adopted. This model, based on a potential representation of
the flowfield around the vehicle, consists of a Lagrangian approach
whose peculiarity is to derive the aerodynamic force and moment
through the Lagrange equations method* applied to a Lagrangian
function T, which represents the kinetic energy of the stream. The
model yields the mathematical expressions of the aerodynamic co-
efficients in terms of the angle of attack o, of the velocity parameter
k_V/jg_V sind|, and of the three angular velocities.

Therefore, the aerodynamic force and moment on the fuselage
are obtained using the Lagrange equationsin the general form>*

U= —qr dy T X 9y
or  d T or
(L, M, N) _ — )
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where as the correspondingaerodynamic coefficients are defined by
(X,Y,2Z) — 1pV;*S(C,. Cy, C2)

(L, M, N) — épvj'ZSD(Cla Cm’ Cn) (3)

where D is the shroud diameter, S _ 7 D?/4 is the reference surface
and

Vi — \/(u —ug)? (v _v)? L (w_w, _vg)? “

is the reference velocity.

The expression of T contains several unknown parameters that
give the aerodynamic characteristics of the vehicle. These quanti-
ties, which are the free parameters of the model, have been iden-
tified through the elaboration of the data calculated by the code
VSAERO,'" which is capable of solving the complex aerodynamic
field on the airframe in the presence of the fan flow.

As aresult of the vehicle symmetry about the z axis, the flow on
the shroud depends upon ¢ and k, and, therefore, Egs. (2) and (3)
yield aerodynamic coefficients that are functionsof @, k and p, ¢, r
and do not depend on sideslip angle.

The model is able to take into account the aforementionedeffects
ofinteractionbetween the rotor flow and the aerodynamicfield about
the vehicle.

Rotor

The aerodynamic actions developed by the rigid (no flapping)
counter-rotating rotors provide lift force and control moments to
manage rotorcraftattitude. In particular, pitch and roll are controlled
through longitudinal 65 and lateral 8, variations of blade pitch,
whereas the yaw control is carried out by means of differential

variation 8p of the collective pitch on both rotors whose angular
velocity is kept constant by a rpm governor. The blade pitch is
controlled by a mechanism consisting of two independent swash
plates, each driven by three actuators. Rigid rotors cause moments
that are transmitted to the fuselage and, because they have the same
moments of inertia with respectto their rotation axis, the gyroscopic
effects of the two rotors are balanced by each other and therefore
do not appear in the rigid-body moment equations.

The thrust forces and moments developed by the rotors are given
by the equations'?

X7, Yr, Zr) — _7T,OQZR4(CXT, CyT, C:T)
(L7, My, N¢) _ mpS2R(Cly s Couy» Cy) 5)

The rotor model, based on the blade-element theory, calculates the
thrust and moment coefficients through analytical integration of the
aerodynamicload along the blade span assuming steady-state aero-
dynamics, whereas the effects from the blade-tip losses and the
mutual influence between the two rotors are neglected. As a con-
sequence, the rotor coefficients depend on angle of attack o, ad-

vance ratio ¥, angular velocity (p, g, r), and the control deflections
(8Aa 685 6Ca 6P)

Neural-Network-Based Vehicle Model

To estimate the wind-velocity components by the measurements
of the observable variables, it is necessary to have a vehicle math-
ematical model that estimates the time derivatives of the state vari-
ables in terms of the state and control variables and wind velocity.
This model is realized by means of the neural-network technique.

Very often the neural networks are utilized to model the entire
vehicle model equations, which, in turn, includes well-known terms
suchas the weightcomponentsand the moments of the inertia forces.

Here the equations of motion, forces, and moments acting on the
rotorcraftare givenby Eqs. (1), (3), and (5), respectively, where each
aerodynamicor thrust coefficientis expressed by means of artificial
neural-networks’ technique.

According to Ref. 9, each neural network is used to determine
a single aerodynamic or rotor thrust and moment coefficient. The
input variables are the pairs (@, k) for the aerodynamic coefficients
and (@, V) for the rotor actions.

The contribution of the controls and the angular velocity is taken
into account, respectively, through the control derivatives and the
derivatives with respectto p, g, and r.

Figure 2 illustrates the neural-network architecture here utilized
that consists in a feed-forward scheme where each layer is com-
pletely connected to its contiguous one. The input layer has two
neurons, each employing a linear activation function, and it is fully
connected with the first hidden layer. The neurons of each hidden
layer have the hyperbolic tangent as activation function

X X
Fl) o —=— )
e + e—
and simple multiplicative connection with weight w;; is realized
between two generic neuronsith and jth so that the signal at the ith

neuron results’:
Xi — f(Z w[jx,) (7
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HIDDEN LAYER 2

HIDDEN LAYER 1

INPUT LAYER

kor ¥

Fig. 2 Schematic of the artificial neural-network architecture.

All of the networks have two hidden layers, whereas the output
layer is made of a single neuron, which corresponds to a simple
linear activation function. The number of neurons for each hidden
layeris selectedin such a way that the maximum differencebetween
estimated and real value is less than 1% of the maximum value. In
this respect tests show that the number of neurons for each hidden
layer which satisfy this condition is greater than 18. Hence all of
the networks have two hidden layers with 20 neurons.

To train the neural networks, the aerodynamic and rotor mod-
els described in the preceding sections have been used to gener-
ate 40,000 randomly generated pairs (&, k) or (&, ¥) with an uni-
form probability distribution in the intervals (_90, 90) . (0,2) or
(90, 90) , (_0.5, 0.5), respectively. Each single neural network
is trained by presenting to it all of the aforementioned pairs and the
corresponding coefficients.

The artificial neural networks are used only to estimate the aero-
dynamic and rotor coefficients in a preprocessing step followed by
wind estimation.

Aerodynamic Model

Each aerodynamic coefficient C; is supposed to be the sum of a
part C;nn that depends on @ and k, plus linear functionsof p, ¢, and
r, that is,

aC; aC; aC;
Ci — Cinnla k) 4 TPt g It o

(i _x.y,z,l,m,n) (8)

where (p, q,r) — D/2V(p. q. r). The first term of Eq. (8) is mod-
eled using an artificial neural network (Fig. 2) that has « and k
as input parameters and the aerodynamic coefficients evaluated at
p —¢q —r —0 as outputs. The other terms represent the contribu-
tions of the rotary derivatives to the aerodynamic coefficients. Each
rotary derivative is a function of @ and k and is expressed through
the terms of Eq. (2) that depend on p, g, and r.

Rotor Model

Rotor thrust and moment coefficients dependuponc, v, (p, g, r)
and (84,05, 8¢, dp), and, also in this case, they are expressed as

0C; aC; aC;
Cir — Citnn (e, ¥) + BpT P4 aqTq + arTr

ACir BC[T(S BC[T(S BC[T(S
+ 98, *t s, Pt as. °t as,

(i _x,y,z,l,m,n) (9)

where the rotary and control derivatives are assumed to be constant
quantities, whereas the expressionsof the nonlinearfunctions C;tnn
are obtained through a neural network, which has the same scheme
shown in Fig. 2.

State Representation and Observability

Both rotorcraft and the vehicle neural-network model are in the
state-space form. The equations of motion for the rotorcraft can be
written as

x _fO,u,w,m)

y— gl x u) — glx. fOeus w, M) ul, z=y4+§ (10)
where x _ (u, v, w, ¢, 0, ¥, p, ¢, r, x, y, 2) is the state vector, the
functionf representsthe RHS of the motion equations wherein aero-
dynamic and thrust coefficients are calculated as described in the
proper sections, whereasy and z define, respectively, the observabil-
ity and measurability of the dynamical system. The measurement
noise & is caused by the instrumentationerrors, whereas 77 can have
variousorigins such as the engine vibrationsor the air turbulence.In
the latter case w and 77 are, respectively, the average wind-velocity
and the wind-velocity fluctuations.

The present analysis prescribes the observability of x and x so
thaty depends on x, u, w and 1.

As for the neural-network model,

xe — fanGe, usw,) (1D
Ye — g0 xes ) — gnn(xs s we) (12)

where fnn is the RHS of the equations of motion wherein the aero-
dynamic and thrust coefficients are given by neural networks while
ye and w, are the estimated outputquantities and the estimated wind
velocity.

Although Eq. (11) is not used to calculate the time history of the
state variables, it is necessary to determine x. as the function of x,
u, and w, to obtain the estimated observable variablesin terms of x,
u, andw,.

Stability Augmentation

The vehicle is highly unstable, and its dynamic characteristics
are significantly influenced by the flight velocity and the angle of
attack.’ Therefore, a control system is to be designed for its stabi-
lization in a wide range of flight conditions. The linear quadratic
regulator techniqueis here adopted for the sake of simplicity, where
the matrix gain I is determined, which gives a minimum value for
the performance integral'

/' (AxTQwa_‘_AuTRwAu) dr (13)

0

where Au _ _T'Ax, Qu, and Ry are the state weighting and con-
trol weighting matrices respectively,and A indicates perturbations
with respect to the reference condition. The control command is
expressed as

u_n_TAx (14)
where I is given by
F_R."'B'™M (15)
being M the solution of the steady-state Riccati equation
MA +ATM _MBR.,-'B™M 40w =0 (16)

where A and B, which are obtained from Eqs. (11), are numerically
calculatedby centeredfinite differences,and Eq. (16) is solvedusing
a Newton—Raphson algorithm.

Therefore, the control law is implemented on the rotorcraft as
follows:

x_fon _TAx,w.n) _ f&x.uwn) (17)



DE DIVITIIS 763

The calculationof I is only valid around the reference conditions.
Some tests have shown that the typical scheduling of Qw and Rw
with slow state variables such as airspeed and altitude cannot be
sufficient to stabilize the rotorcraft in the various flight situations
because of the strong nonlinearity of the model. For this reason,
during the simulation the matrices A, B, and I' are updated when
the maximum of the state variables variations exceeds the 10% of
their reference values. These reference values, which are selected
in order to stabilize the vehicle, are V for the velocity components,
0-01(V;/ D) for the angular velocity components, and 7 /2 for the
Euler angles.

In the calculations Qv and R, are given by the values Quii —
Quwij =0, (i 75]'), Quzr — Quss — 1/ Vrer, Quas — Quss — Ques
= Qw77 = Qwss = Qw99 = 1, and Rw[j =0, @ ;éj), Ruii = 1,
i-1234).

Variational Technique for Wind- Velocity Estimation

The procedure illustrated in this section is founded on a varia-
tional technique, the characteristics of which are in the framework
of output error method that, basically, consists of nonlinear opti-
mization procedures and is commonly employed to estimate the
parameters of aircraft model.*’

In this study the minimum of the following functionalis searched
for:

T
J(w)zL/ () _y"R-'[z(t) _y.]dt (18)
2T |,

which depends, through Eq. (12), upon w..

The solution that minimizes J supplies an estimation of the wind
velocity w. that, as shows from Eq. (18), directly depends on the
covariance matrix R.

The condition that leads to the minimum of J can be expressed
using variational calculus 8L _ (3J" /dw.)dw. _ 0 8w.. Because
of the arbitrariness of dw,, one obtains

] J 1 r 1 3gNN
— == | R ——dt_0 19
owe =T /(: ow, = (19)
The solution of Eq. (19) only exists if R is not singular and,
dgnn/Ow, + 0 and provides the time variations w, during the obser-
vation period 7.

Several numerical methods can be used to solve Eq. (19). Actu-
ally the minimization is carried out by introducing, together with
Eq. (18), a set of differential equations that reasonably represents
the time history of the wind velocities

We —a = (aWX’ awys aW:)v «/aTa < aAMAX (20)
where the RHS a is the a priori unknown local wind acceleration,
whereas amax represents its maximum intensity.

The problem is therefore formulated to find the minimum of J
with constraints expressed by Eq. (20) as follows

1 T
Ja<we,we)=1+5/ N (we _a)de
0

T

1 .
_ 5/' LW, w.)df _ min 1)

0

with
Lwe.we) — [2() _y]"R-'2(0) _y. ] N we _@)  (22)

where L is a function of both w, and w., whereas A is the Lagrange
multipliers vector. The solution that minimizes J is obtained apply-
ing the variational calculus to Eq. (21), that is,

d /0L oL —_

—_ , A\ , T

df(awf)_awezo @ =max JaasaMAX
(23)

IntroducingEq. (22)into Eq. (23), one obtains the following system:

a
A R,lﬂ (24)
= an
Xa _ max, Ja'a < avax (25)

where Eq. (24) gives the time history of A, and the algebraic set
of Eq. (25) gives the value of a. Then Eqgs. (24) and (25) can be
rewritten as

a
A _ R’l J8NN (26)
ow,
A
We — aMAXE 27

Equation (27) states that w. describes in the space (awx, awy, aw-)
the points of a sphere having radius amax and center in the origin
(0,0, 0). Because of the presence of a discontinuity of the term
A/ in the origin, Eq. (27) does not admit solutions representing
steady winds. To obtain steady solutions, in Eq. (27), amax is re-
placed by the term amax tanh(jA|), which is a function that vanishes
at |A| = 0 and is equal to amax When |A| _, o

1 9gnN

A ;
= R awF

A
We — AMAX tanh(|)\|)7 (28)
|

allowing steady solutions for (A| _, 0.

As a conclusion, the problem has been reduced to a set of or-
dinary differential equations, the solutions of which give the time
histories of w, and A. In particular,w, and Aare calculatedintegrat-
ing Egs. (28), and, therefore, they depend upon the initial condition
w.(t _0), Az _0). In all of the calculations, it is w.(r _0) _0,
Az _0)_0.

Also, amax has the purpose to limit fast time variations of the es-
timated gust speed, and an adequate value of it prevents undesirable
reproductions of noises and turbulent velocity fluctuations.

Filtering Approach for Wind-Velocity Estimation

To validate the proposed method, the results calculated by the
VT approach will be compared with those of a classical tech-
nique based on filtering approach, which is described in the present
section.

The scheme of filtering approach®’ is shown in Fig. 3, where
the wind estimation is carried out by modeling the three wind-
velocity components as state parameters that satisfy the following
equation:

w_0 (29)

By defining the augmentedstate vectorx! _ (x”,w"), the equations

of the augmented system read as follows®”'*:

xaz[f(x’"’w’")} y_hew,  z_y & (0

0
Measurement
Process i
n\Lnoise }’5 noise
W+ Measured
Input, u Rotorcraft y O Z response

wind estimation by using
Extended Kalman Filter

X = f(x, u, w, n)

Fig. 3 Scheme of the filtering approach (KF).
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The wind estimation is carried out applying the extended steady-
state Kalman filter to Eq. (30). To calculate the Kalman filter, the
linearized version of Eq. (30) is considered:

xa=Ax+Bu+Hw+F?7+bX
y_Cx Du,b. z_y.¢& @31

where b, and b, are bias terms that take into accountnonzeroinitial
conditions and possible systematic errors.
The procedure calculates the steady-state Kalman matrix gain

as®’
K _ PCR-! (32)
where P satisfies the well-known algebraic Riccati equation
AP _ PA" _PC'R-'CP (FVF" _0 (33)

Hence, the augmented estimated state is calculated by solving the
differential system

fxes u, we, 0)
Xae —
_ [ .

} LKy _h (34)

Next, the Kalman matrix gain is splitted in the two submatrices K.
and K such that K _ (K. K.)", so as to separate the wind-velocity
equations from the other ones:

Xe =f(xe,u,we,0)+KX(y_h), we _ Ku(y _h) (35)

Finally, the time history of x. and w. are obtained by integrating
Eqgs. (35), which that therefore need initial conditions on both x,
and we.

As for the implementation of this procedure, a few remarks fol-
lows. The Runge—Kutta fourth-ordermethod with adaptive time step
is used to integrate Eqgs. (35). Because the extended Kalman filter
method is applied to a nonlinear system, it is necessary to calculate
both state and control matrices several times during the simulations.
The method checks all of the state variables, and, when the maxi-
mum of their relative variations exceeds 0.05 of the reference value,
it updates the matrices A, B, H, F, and K. Greater allowed variation
of the state variables does not always permit the convergence of the
procedure.The matricesthatappearin Eqs. (31) are calculatedusing
centered finite differences, Eq. (33) is solved by a subroutine based
on the Newton—-Raphsonalgorithm,and, in all of the simulations, the
initial condition of Egs. (35) is assumed to be x,.(t —0) _x( _0)
and w.(r _0) _0.

Results and Discussion

The effectivenessof the proposedmethodis evaluatedby carrying
out simulations wherein the motion of the rotorcraftin the presence
of wind is considered. The results so obtained are compared with the
corresponding calculations realized applying the extended Kalman
filter method.

In all of the simulations run by using VT, the components in
body axes of the acceleration are measurable, whereas all of the
state variables are supposed to be observable from the simulations.
So that in Egs. (10) and (12), it is g — (ax, ay,a:). As a conse-
quence, in Eq. (18), R is a 3 y 3 diagonal matrix, the elements of
whichrepresentthe standard deviationsof the accelerationmeasure-
ment errors. In all of the simulations, the elements of R are given
by realistic values based on sensor characteristics, and it results
Rll — R22 — R33 — 0.05 msJ.

The value for amax is to be selected so as to keep an accurate
estimation of the mean wind velocity and an adequate filtering on
the turbulent fluctuations. In this respect amax — 1 ms—2 appears to
satisfy both the requirements because, according to simulations, it
provides an acceptable filtering effect together with a good evolu-
tion of the mean velocity variations. Higher values of amax cause
undesirable reproductions of turbulent fluctuations, whereas lower
values can result in excessively slow estimation of the mean wind
velocity.

In Egs. (31) and (32) C is a 12 y 12 identity matrix, and R
is assumed to be a 12, 12 diagonal matrix whose elements are

given by realistic values based on the sensors characteristics.
They are R11 — R22 — R33 =01 IIlS*l, R44 — R55 — R55 =002 rad,
R77 — Rgg — R99 =0~03 rad S*l, Rmm — R11 11 =5 m, and R1212 —
50 m. The subscript number indicates the corresponding state vari-
able, and, alsoin this case, all of the elements are chosen considering
the measurement error.

In all of the simulations, it is assumed that the noise 77 is caused
by the atmospheric turbulence.

To compare the two algorithms, five cases will be considered
where the initial condition for the simulation is a level flight with a
speed equal to 30 ms—" at an altitude of 100 m.

The first case, addressed in Fig. 4, considers a simulation last-
ing 20 s where the rotorcraft, after 5-s, encounters an ascending

115;

31r

30.5}F
V(m/s
( )30

20.5F

15 20

Fig. 4 Case 1: wind-velocity time histories for a vertical gust;
_ _1
wg=_1ms—".



DE DIVITIIS 765

gust having velocity equal to 1 ms—'. The two algorithms achieve
the same asymptotical values of wind velocities, but, whareas KF
method (dashedline) generatesa time history in which W, monoton-
ically approaches the limit of _1 ms-', the VT time history (con-
tinuous line) presents an overshoot with respect to the real wind
velocity (dotted line). The choice of amax for VT and R for KF
leads to time histories that, after 5 s, present very similar slopes of
w,. The maximum errors on the component u, resultin 0.09 ms—'
and 0.11 ms—' for the VT and KF respectively, whereas the errors
of v, are always less than 0.005 ms~-' for both the algorithms. Al-
though both rotorcraft motion and gust velocity distributionare two
dimensional, the KF method yields values of v, slightly different
from zero. This is because the wind estimationis realized by means
of the Kalman filter applied to a complete set of the equations of
motion, which, in general, do not guarantee the calculation of the
exact value of the wind velocity.

In the second simulation the vehicle flies into a vertical turbulent
gust described by the Dryden model. The turbulence scale is as-
sumed to be equalto 100 m, whereas jugy _ (Vgy 0, Wey _ 1 ms—"
and o, _0, _0,0. _0.2 ms—'. The efements of Vare Vi, _02,
Vay _ 02, V33 _02 and Vi; _0,i  j, whereas the turbulence scale
is assumed on the basis of the datareported in Ref. 10. Figure 5 illus-
trates the time histories of various quantitiessuch as altitude, vehicle
speed, and wind-velocity components, whereas Table 2 reports es-
timated average velocities and standard deviations of the velocities.
It appears from Table 2 that the estimate errors of W, are about 4.5
and 3% for VT and KF, respectively. Also in this two-dimensional
case, values of v, slightly different from zero are computed from
the KF procedure.

The third case concerns a more complex situation, where the
vehicle flies into an atmospheric region with a uniform mean ve-
locity distribution and an appreciable turbulent level, which is,
also in this case, described by means of the Dryden model, with

0,0y, _0._02ms", jugy _ Vg) = 1 ms-!, (Wey = _1 ms-1,
and a turbulence scale of 100 m. Iéence V is expressedby Vi, _ 02,
Vs, 203, Vi3 =U:2, and V;; _0, i  j. Figure 6 shows the wind-

velocity components vs time, whereas Table 3 gives the average
velocities and the standard deviations obtained with the two proce-
dures. The maximum difference between true and estimated veloci-
ties are less than 4 and 6% for the VT and KF methods, respectively.
The fourth case, shown in Fig. 7, regards a simulation lasting
50 s where the wind velocities are variable. Wind components in a
three-dimensional gust are expressed as follows:

ug — 2sin*(27t/T,), vy, — 0.5.t>0
w, _ _sin(2mt/T,) (36)

where T,, — 50 sis equalto the entire simulationperiod. The analysis
of the time histories shows that KF and VT adequately reproduce

Table2 Case 2: Mean values and standard
deviations of wind velocities

Parameter Nominal VT KF
() 0.00 _143E_3 84E_3
) 0.00 1.6E_5 1.4E_4
(W _1.00 _0.9706 _0.9552
oy 0.00 0.0151 0.0342
oy 0.00 4.66E_5 2.1E_3
0. 0.20 0.169 0.151

Table 3 Case 3: Mean values and standard deviations of
wind velocities

Parameter Nominal VT KF
Q) 1.00 1.027 0.9980
v 1.00 0.977 0.9583
) _1.00 _0.967 _0.9437
o, 0.20 0.176 0.178
ay 0.20 0.186 0.140
0. 0.20 0.150 0.153
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1005 70 2030 40 B0
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295}
29 10 20 30 40 50
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02;
-0.25 70 20 30 40 50
t(s)
0.01 Elll
0005f
ooy ‘ A
vg(m/s)0 WA A A M
VENTRL Rt
i} U 4
-0.005F ! /
-0.015 10 20 30 0 50
t(s)
O-
-0.
w, (m/s)
1H

-1.55

Fig. 5 Case 2: wind-velocity time histories for a vertical gust in the
presence of turbulence; (ug)=(vg) =0, (wg)=_1 ms—!, 0, =0, =0,
and 0;=02ms'.

the three wind-velocity components,and their errors are always less
than 6 and 5%, respectively.

Figure 8 illustrates the fifth case that corresponds to a flight into
a turbulent gust having the aforementioned mean velocity distribu-
tions but in the presence of a significant turbulent level given by
the following standard deviations o, _ 0.2 ms~"', o, _0.05 ms—',
o, =01 IIlS*l, so that Vi, =UX2, \%Z% =03, Vi3 =U:2, and V[j =0,
i £ j, with a turbulence scale equal to 100 m. In spite of the si-
multaneous presence of turbulence effects and time variations of
mean velocity, it is possible to distinguish the mean velocity from
the turbulent fluctuations in the time histories obtained by the two
algorithms.
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Fig. 6 Case 3: wind-velocity time histories for a steady gust in the
presence of turbulence; (ug)=(vg)=1 ms—1, (wg)=—-1 ms—!, and
0,=0,=0,=0.2 ms—1.

Although it is apparent that the two methods produce very
similar results, a sizeable difference can be observed from the
computational point of view. In all of the simulations, VT is re-
sulted about two to three times faster than KF, and this is re-
lated to the different computational tasks that occur in the two
procedures.

In fact, the VT method requires the calculation of gny and
its derivatives with respect to w., the determination of Lagrange
multipliers, and estimated wind velocities. While in the KF tech-
nique, it is necessary to evaluate many times during the simula-
tion A, B, H, F and K because of the nonlinearities in the vehicle
model.

30730 T80

t(s)
Fig. 7 Case 4: wind-velocity time histories for a three-dimensional
variable gust.

Because of the use of artificial neural networks together with the
assumption of constantrotary and control derivatives, the computed
wind velocities can slightly differ with respect to the exact values.
Of course, these differences are more limited if all of the neural
networks are properly trained.

The advantage of VT with respect to KF is that the method does
not require the linearization of the equations of motion, whereas the
KF technique requires the calculation of state and control matrices
and Kalman matrix gain. Furthermore, the VT method only calcu-
lates the time variations of the Lagrange multipliers associated to
the wind-velocity components, whereas the KF approach requires
the calculation of the estimated state x..
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Fig. 8 Case 5: wind-velocity time histories for a three-dimensional
variable gust in the presence of turbulence.

If, in the KF method, H, F, and K were a priori scheduled with the
slow state variables (airspeed and altitude), the procedure would be
more efficient. Nevertheless, several tests have shown that, because
of the strong nonlinearities of the model, the scheduled Kalman
filter calculates velocities that do not always tend to the real value
of the wind velocity.

For VT, gnn must be necessarily a nontrivial function of the wind
velocities in such a way that its derivatives with respect to wind

velocity are not zero. For this reason g has been assumed to be
equal to the vehicle acceleration.

On the other hand, in the KF method the observability function
depends on the state and control variables only. This, in general,
makes the VT approach less adaptable than the filtering approach
method.

The main limitation of the VT is that all of the state variables
have to be measurable, a situation that is very difficult to realize in
practicalapplications.To avoid thisrestriction, the filtering approach
could be used to estimate efficiently the vehicle state, whereas the
wind estimation can be interfaced with the state estimation filter.

Conclusions

This work concerns the problem of wind estimation through the
measurements of the state variables of a shrouded-fan unmanned-
aerial-vehiclerotorcraft. The motivation of the study is related to the
difficulties of the wind measurements aboard on a rotary-wing vehi-
cle as a result of the influence of the rotor flow on the aerodynamic
field about the vehicle.

A variationaltechniqueis proposedfor the estimation of the wind
velocity components. The approach is based on adjoint differential
equations that reasonably describe the wind-velocity evolution.

Comparison with a Kalman filter technique has shown that the
proposed algorithm provides good results together with a consider-
able saving of computational time. A final conclusion regards the
main limitation of the proposed method that consists in the fact that
the measurability of the full state is required.
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